admin管理员组文章数量:1130349
问题:
You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).
Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.
Sample Input
5
123456 1
123456 2
2 31
2 32
29 8751919
Sample Output
Case 1: 123 456
Case 2: 152 936
Case 3: 214 648
Case 4: 429 296
Case 5: 665 669
题意:求n^k的前三位和后三位。
思路:1、后三位快速幂取模,注意不足三位补前导零。补前导零:假如n^k为1234005,快速幂取模后,得到的数是5,因此输出要补前导零。注意:前导零(%03d)输出;
2、前三位:令n=10a,则nk=10ak=10x+y,x为ak的整数部分,y为ak的小数部分。
例:n=19,k=4,则n^k=130321,
a=log10(n)=1.2787536009528289615363334757569
a*k=5.1150144038113158461453339030277,
因此,x=5,y=0.1150144038113158461453339030277,
10y=1.3032099999999999999999999999999,因此要获得前三位只需要10y*100下取整即可。
代码:
#include<stdio.h> #include<string.h> #include<math.h> #include<algorithm> using namespace std; int main() { int kk=1,t; scanf("%d",&t); while(t--) { long long a,b,sum=1; scanf("%lld%lld",&a,&b); long long n=a,m=b; if(a>1000) a=a%1000; while(b>0) { if(b%2!=0) sum=(sum*a)%1000; b=b/2; a=(a*a)%1000; } sum=sum%1000; double l=2+m*log10(n); int ll=m*log10(n); int k=pow(10,l-ll); printf("Case %d: %d %03lld\n",kk++,k,sum);//注意输出 } }
问题:
You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).
Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.
Sample Input
5
123456 1
123456 2
2 31
2 32
29 8751919
Sample Output
Case 1: 123 456
Case 2: 152 936
Case 3: 214 648
Case 4: 429 296
Case 5: 665 669
题意:求n^k的前三位和后三位。
思路:1、后三位快速幂取模,注意不足三位补前导零。补前导零:假如n^k为1234005,快速幂取模后,得到的数是5,因此输出要补前导零。注意:前导零(%03d)输出;
2、前三位:令n=10a,则nk=10ak=10x+y,x为ak的整数部分,y为ak的小数部分。
例:n=19,k=4,则n^k=130321,
a=log10(n)=1.2787536009528289615363334757569
a*k=5.1150144038113158461453339030277,
因此,x=5,y=0.1150144038113158461453339030277,
10y=1.3032099999999999999999999999999,因此要获得前三位只需要10y*100下取整即可。
代码:
#include<stdio.h> #include<string.h> #include<math.h> #include<algorithm> using namespace std; int main() { int kk=1,t; scanf("%d",&t); while(t--) { long long a,b,sum=1; scanf("%lld%lld",&a,&b); long long n=a,m=b; if(a>1000) a=a%1000; while(b>0) { if(b%2!=0) sum=(sum*a)%1000; b=b/2; a=(a*a)%1000; } sum=sum%1000; double l=2+m*log10(n); int ll=m*log10(n); int k=pow(10,l-ll); printf("Case %d: %d %03lld\n",kk++,k,sum);//注意输出 } }
本文标签: 快速TrailingLeadingLightOJ
版权声明:本文标题:Leading and Trailing LightOJ - 1282快速幂 内容由热心网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:https://it.en369.cn/jiaocheng/1754940550a2744217.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。


发表评论