admin管理员组文章数量:1024676
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig
from trl import SFTTrainer
dataset = load_dataset("csv", data_files="dataset/data.csv")
base_model = "meta-llama/Llama-3.2-1B"
compute_dtype = getattr(torch, "float16")
# Configure memory-efficient quantization
compute_dtype = getattr(torch, "float16")
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True, # Enable double quantization
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=quant_config,
device_map="auto", # Let transformers handle device mapping
torch_dtype=torch.float16, # Use fp16 for model weights
low_cpu_mem_usage=True, # Enable memory optimization
)
torch.cuda.empty_cache()
model.config.use_cache = False
model.config.pretraining_tp = 1
# Configure PEFT using LoRA for efficient fine-tuning of the model.
peft_params = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=8,
bias="none",
task_type="CAUSAL_LM",
target_modules="all-linear",
)
training_params = TrainingArguments(
output_dir="./results",
num_train_epochs=1,
per_device_train_batch_size=2,
gradient_accumulation_steps=2,
optim="paged_adamw_8bit",
save_steps=50,
logging_steps=50,
learning_rate=2e-4,
weight_decay=0.001,
fp16=True,
bf16=False,
max_grad_norm=0.3,
max_steps=-1,
warmup_ratio=0.03,
group_by_length=True,
lr_scheduler_type="constant",
report_to="tensorboard",
gradient_checkpointing=True,
)
tokenizer = AutoTokenizer.from_pretrained(
base_model,
padding_side="right",
truncation_side="right",
)
tokenizer.pad_token = tokenizer.eos_token
trainer = SFTTrainer(
model=model,
train_dataset=dataset['train'],
peft_config=peft_params,
dataset_text_field="input_text",
max_seq_length=512,
tokenizer=tokenizer,
args=training_params,
packing=False,
)
trainer.train()
I am using the above code block to fine tune Llama 1-B parameters using my PC which has 128 GB RAM and a 4090 GPU. Accordingly the PC has all the requirements met for the model but while executing the trainer = SFTTrainer(....) line the RAM gets filled up and the kernel dies which is unexpected. The dataset size is only 10 GB with 7400 rows of data. Would be glad if anyone could help me solve this issue. The error traceback is like this (it uses up all the 128GB memory and the terminal is shut down)
Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.
warnings.warn(message, FutureWarning)
/home/.../python3.10/site-packages/trl/trainer/sft_trainer.py:300: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
warnings.warn(
/home/.../python3.10/site-packages/trl/trainer/sft_trainer.py:328: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
warnings.warn(
Map: 14%|██████████████████▍ | 1000/7346 [02:59<18:56, 5.58 examples/s]
Killed
I tried all the changes and configuration I could find on Google and previous relevant Stack Overflow blogs but none of those solved the issue.
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig
from trl import SFTTrainer
dataset = load_dataset("csv", data_files="dataset/data.csv")
base_model = "meta-llama/Llama-3.2-1B"
compute_dtype = getattr(torch, "float16")
# Configure memory-efficient quantization
compute_dtype = getattr(torch, "float16")
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True, # Enable double quantization
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=quant_config,
device_map="auto", # Let transformers handle device mapping
torch_dtype=torch.float16, # Use fp16 for model weights
low_cpu_mem_usage=True, # Enable memory optimization
)
torch.cuda.empty_cache()
model.config.use_cache = False
model.config.pretraining_tp = 1
# Configure PEFT using LoRA for efficient fine-tuning of the model.
peft_params = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=8,
bias="none",
task_type="CAUSAL_LM",
target_modules="all-linear",
)
training_params = TrainingArguments(
output_dir="./results",
num_train_epochs=1,
per_device_train_batch_size=2,
gradient_accumulation_steps=2,
optim="paged_adamw_8bit",
save_steps=50,
logging_steps=50,
learning_rate=2e-4,
weight_decay=0.001,
fp16=True,
bf16=False,
max_grad_norm=0.3,
max_steps=-1,
warmup_ratio=0.03,
group_by_length=True,
lr_scheduler_type="constant",
report_to="tensorboard",
gradient_checkpointing=True,
)
tokenizer = AutoTokenizer.from_pretrained(
base_model,
padding_side="right",
truncation_side="right",
)
tokenizer.pad_token = tokenizer.eos_token
trainer = SFTTrainer(
model=model,
train_dataset=dataset['train'],
peft_config=peft_params,
dataset_text_field="input_text",
max_seq_length=512,
tokenizer=tokenizer,
args=training_params,
packing=False,
)
trainer.train()
I am using the above code block to fine tune Llama 1-B parameters using my PC which has 128 GB RAM and a 4090 GPU. Accordingly the PC has all the requirements met for the model but while executing the trainer = SFTTrainer(....) line the RAM gets filled up and the kernel dies which is unexpected. The dataset size is only 10 GB with 7400 rows of data. Would be glad if anyone could help me solve this issue. The error traceback is like this (it uses up all the 128GB memory and the terminal is shut down)
Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.
warnings.warn(message, FutureWarning)
/home/.../python3.10/site-packages/trl/trainer/sft_trainer.py:300: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
warnings.warn(
/home/.../python3.10/site-packages/trl/trainer/sft_trainer.py:328: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
warnings.warn(
Map: 14%|██████████████████▍ | 1000/7346 [02:59<18:56, 5.58 examples/s]
Killed
I tried all the changes and configuration I could find on Google and previous relevant Stack Overflow blogs but none of those solved the issue.
本文标签: pythonLlama using up all RAM storage causing kernel to dieStack Overflow
版权声明:本文标题:python - Llama using up all RAM storage causing kernel to die - Stack Overflow 内容由热心网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://it.en369.cn/questions/1745612698a2159099.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论