admin管理员组文章数量:1031950
StreamGraph、JobGraph、ExecutionGraph以及物理执行图
1.定义
StreamGraph、JobGraph、ExecutionGraph以及物理执行图是Apache Flink中实现流处理的关键组件,它们之间存在着层次结构和依赖关系,用于执行流处理任务。
- StreamGraph StreamGraph是Flink的逻辑执行图,描述了整个流处理任务的流程和数据流转递规则,包括了数据源、转换算子、数据汇等元素,以及它们之间的依赖关系和传输规则。StreamGraph可以通过Flink的API或者DSL来构建,它与JobGraph之间是一一对应的关系。
- JobGraph JobGraph是Flink的中间执行图,它是由StreamGraph转换而来,并加入了一些与物理执行相关的信息,例如任务的并行度、任务之间的边界、任务的资源需求等。JobGraph中的每一个任务都对应一个ExecutionJobVertex,它是ExecutionGraph中的一个节点。
- ExecutionGraph ExecutionGraph是Flink的物理执行图,它是由JobGraph转换而来,描述了整个流处理任务的物理执行细节,包括了任务的调度、任务的执行顺序、任务之间的数据传输、任务的状态管理等。ExecutionGraph中的每一个ExecutionJobVertex都对应一个或多个ExecutionVertex,它们是物理执行图中的节点。
- 物理执行图 物理执行图是ExecutionGraph的一部分,描述了流处理任务的物理执行流程,包括了任务的调度、任务之间的数据传输、任务的状态管理等。在物理执行图中,每个ExecutionVertex都会被分配到一个或多个TaskManager节点上执行,而TaskManager节点则会根据任务的需求进行资源分配和管理,以实现任务的高效执行。
2.StreamGraph组成
- 数据源: StreamGraph中的数据源定义了数据输入的方式,可以是文件、消息队列、Socket等。
- 转换算子 StreamGraph中的转换算子用于对数据进行转换操作,例如map、filter、reduce等。
- 数据汇 StreamGraph中的数据汇定义了数据输出的方式,可以是文件、消息队列、Socket等。
- 依赖关系 StreamGraph中的依赖关系定义了数据的流向和传输规则,例如数据源到转换算子的依赖、转换算子之间的依赖、转换算子到数据汇的依赖等。
- StreamNode 表示数据流处理程序中的算子,每个StreamNode包含算子的ID、算子的名称、算子的并行度、算子的类型以及算子之间的输入输出关系等信息。
- StreamEdge 表示算子之间的数据流关系,每个StreamEdge包含源算子的ID、目标算子的ID、数据流的分区方式以及数据流的类型等信息。
- Optimizer 表示Flink作业的优化器,用于对StreamGraph进行优化,包括任务链合并、任务拓扑排序等操作。
在Flink中,StreamGraph、JobGraph、ExecutionGraph以及物理执行图这些组件共同构成了流处理任务的执行流程,它们之间的关系和依赖决定了流处理任务的执行效率和性能。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。 原始发表:2023-03-11,如有侵权请联系 cloudcommunity@tencent 删除教程数据优化flink管理StreamGraph、JobGraph、ExecutionGraph以及物理执行图
1.定义
StreamGraph、JobGraph、ExecutionGraph以及物理执行图是Apache Flink中实现流处理的关键组件,它们之间存在着层次结构和依赖关系,用于执行流处理任务。
- StreamGraph StreamGraph是Flink的逻辑执行图,描述了整个流处理任务的流程和数据流转递规则,包括了数据源、转换算子、数据汇等元素,以及它们之间的依赖关系和传输规则。StreamGraph可以通过Flink的API或者DSL来构建,它与JobGraph之间是一一对应的关系。
- JobGraph JobGraph是Flink的中间执行图,它是由StreamGraph转换而来,并加入了一些与物理执行相关的信息,例如任务的并行度、任务之间的边界、任务的资源需求等。JobGraph中的每一个任务都对应一个ExecutionJobVertex,它是ExecutionGraph中的一个节点。
- ExecutionGraph ExecutionGraph是Flink的物理执行图,它是由JobGraph转换而来,描述了整个流处理任务的物理执行细节,包括了任务的调度、任务的执行顺序、任务之间的数据传输、任务的状态管理等。ExecutionGraph中的每一个ExecutionJobVertex都对应一个或多个ExecutionVertex,它们是物理执行图中的节点。
- 物理执行图 物理执行图是ExecutionGraph的一部分,描述了流处理任务的物理执行流程,包括了任务的调度、任务之间的数据传输、任务的状态管理等。在物理执行图中,每个ExecutionVertex都会被分配到一个或多个TaskManager节点上执行,而TaskManager节点则会根据任务的需求进行资源分配和管理,以实现任务的高效执行。
2.StreamGraph组成
- 数据源: StreamGraph中的数据源定义了数据输入的方式,可以是文件、消息队列、Socket等。
- 转换算子 StreamGraph中的转换算子用于对数据进行转换操作,例如map、filter、reduce等。
- 数据汇 StreamGraph中的数据汇定义了数据输出的方式,可以是文件、消息队列、Socket等。
- 依赖关系 StreamGraph中的依赖关系定义了数据的流向和传输规则,例如数据源到转换算子的依赖、转换算子之间的依赖、转换算子到数据汇的依赖等。
- StreamNode 表示数据流处理程序中的算子,每个StreamNode包含算子的ID、算子的名称、算子的并行度、算子的类型以及算子之间的输入输出关系等信息。
- StreamEdge 表示算子之间的数据流关系,每个StreamEdge包含源算子的ID、目标算子的ID、数据流的分区方式以及数据流的类型等信息。
- Optimizer 表示Flink作业的优化器,用于对StreamGraph进行优化,包括任务链合并、任务拓扑排序等操作。
在Flink中,StreamGraph、JobGraph、ExecutionGraph以及物理执行图这些组件共同构成了流处理任务的执行流程,它们之间的关系和依赖决定了流处理任务的执行效率和性能。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。 原始发表:2023-03-11,如有侵权请联系 cloudcommunity@tencent 删除教程数据优化flink管理本文标签: StreamGraphJobGraphExecutionGraph以及物理执行图
版权声明:本文标题:StreamGraph、JobGraph、ExecutionGraph以及物理执行图 内容由热心网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://it.en369.cn/jiaocheng/1747895727a2224216.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论