admin管理员组文章数量:1026989
【Java数据结构】平衡二叉树的手术刀剖析
文章目录
- 一、概念
- 二、操作
- 1.建树
- 2.查找
- 3.插入
- 4.删除
- 5.运行
- 6.性能分析
- 三、完整代码
- 总结
一、概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
- 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
- 它的左右子树也分别为二叉搜索树
二、操作
1.建树
class Node{public int val;public Node left;//建立左结点public Node right;//建立右节点public Node(int val){this.val = val;}
}
2.查找
通过观察上面的三个查找数据的图,我们可以得到以下规律:
若根节点不为空:
- 如果根节点key==查找的key,返回true;
- 如果根节点小于查找key,在其右子树查找;
- 如果根节点大于查找key,在其左子树查找。
如果都没有,返回false。
public Node search(int key){Node cur = root;while (cur != null){if(cur.val == key){return cur;}else if(cur.val < key){cur = cur.right;}else {cur = cur.left;}}return null;//表示没有这个结构}
3.插入
步骤:
- 如果树为空树,即根 == null,直接插入
- 如果树不是空树,按照查找逻辑确定插入位置,插入新结点
public boolean insert(int val){if(root == null){root = new Node(val);return true;}//寻找位置Node cur = root;Node parent = null;while(cur != null){if(cur.val < val){parent = cur;cur = cur.right;}else if(cur.val == val){return false;//不能存在相同的元素}else {parent = cur;cur = cur.left;}}
//插入结点Node node = new Node(val);if(parent.val < val){parent.right = node;}else {parent.left = node;}return true;}
4.删除
删除这里相对来说比较复杂,分三种情况:
//遍历寻找key的位置public void remove(int key){Node cur = root;Node parent = null;while(cur != null){if(cur.val == key){removeNode(cur,parent);//调用函数break;}else if(cur.val<key){parent = cur;cur = cur.right;}else {parent = cur;cur = cur.left;}}}
//真正的删除结点函数public void removeNode(Node cur,Node parent){if(cur.left == null){//第一种情况,左子树为空if(cur == root){root = cur.right;}else if(cur == parent.left){parent.left = cur.right;}else {parent.right = cur.right;}}else if(cur.right == null){//第二种情况,右子树为空if(cur == root){root = cur.left;}else if(cur == parent.left){parent.left = cur.left;}else {parent.right = cur.left;}}else{//第三种情况,左右子树均不为空//这种情况比较复杂,我们使用替换法,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题Node targetParent = cur;//定义父结点Node target = cur.right;while(target.left != null){targetParent = target;target = target.left;}cur.val = target.val;targetParent.left = target.right;if(target == targetParent.left){//target在左边的情况targetParent.left = target.right;}else{//target在右边的情况targetParent.right = target.right;}}}
上面有段代码可能会比较费解,这里给一个示意图,大家对照图片看一下。
5.运行
public static void main(String[] args) {int[] array = {31,2,18,19,9,34,7};BinarySearchTree binarySearchTree = new BinarySearchTree();//实例化for(int i = 0 ;i < array.length; i++){binarySearchTree.insert(array[i]);//插入结点}binarySearchTree.inOrder(binarySearchTree.root);//中序遍历System.out.println();System.out.println("插入重复的数据");System.out.println(binarySearchTree.insert(3));//数据不存在,可插入,返回trueSystem.out.println("删除数据:");binarySearchTree.remove(7);;binarySearchTree.inOrder(binarySearchTree.root);//中序遍历}
运行结果:
6.性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
- 最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:log2N.(以2为底的logN).
- 最差情况下,二叉搜索树退化为单支树,其平均比较次数为N/2.
三、完整代码
class Node{public int val;public Node left;public Node right;public Node(int val){this.val = val;}
}public class BinarySearchTree {public Node root = null;public Node search(int key){Node cur = root;while (cur != null){if(cur.val == key){return cur;}else if(cur.val < key){cur = cur.right;}else {cur = cur.left;}}return null;//表示没有这个结构}public boolean insert(int val){if(root == null){root = new Node(val);return true;}Node cur = root;Node parent = null;while(cur != null){if(cur.val < val){parent = cur;cur = cur.right;}else if(cur.val == val){return false;//不能存在相同的元素}else {parent = cur;cur = cur.left;}}Node node = new Node(val);if(parent.val < val){parent.right = node;}else {parent.left = node;}return true;}//遍历寻找key的位置public void remove(int key){Node cur = root;Node parent = null;while(cur != null){if(cur.val == key){removeNode(cur,parent);//调用函数break;}else if(cur.val<key){parent = cur;cur = cur.right;}else {parent = cur;cur = cur.left;}}}
//真正的删除结点函数public void removeNode(Node cur,Node parent){if(cur.left == null){//第一种情况,左子树为空if(cur == root){root = cur.right;}else if(cur == parent.left){parent.left = cur.right;}else {parent.right = cur.right;}}else if(cur.right == null){//第二种情况,右子树为空if(cur == root){root = cur.left;}else if(cur == parent.left){parent.left = cur.left;}else {parent.right = cur.left;}}else{//第三种情况,左右子树均不为空Node targetParent = cur;Node target = cur.right;while(target.left != null){targetParent = target;target = target.left;}cur.val = target.val;targetParent.left = target.right;if(target == targetParent.left){//target在左边的情况targetParent.left = target.right;}else{//target在右边的情况targetParent.right = target.right;}}}
//中序遍历public void inOrder(Node root){if(root == null) return;inOrder(root.left);System.out.print(root.val+ " ");inOrder(root.right);}public static void main(String[] args) {int[] array = {31,2,18,19,9,34,7};BinarySearchTree binarySearchTree = new BinarySearchTree();//实例化for(int i = 0 ;i < array.length; i++){binarySearchTree.insert(array[i]);//插入结点}binarySearchTree.inOrder(binarySearchTree.root);//中序遍历System.out.println();System.out.println("插入重复的数据");System.out.println(binarySearchTree.insert(3));//数据不存在,可插入,返回trueSystem.out.println("删除数据:");binarySearchTree.remove(7);;binarySearchTree.inOrder(binarySearchTree.root);//中序遍历}
}
总结
写这次博客的最大难度可能就是平衡二叉树的删除操作的第三种情况了,一开始没太懂整体逻辑,后面的话,慢慢跟着代码画图,模仿运行时的操作,慢慢就懂了。果然,数据结构还是得多画图,多练。
【Java数据结构】平衡二叉树的手术刀剖析
文章目录
- 一、概念
- 二、操作
- 1.建树
- 2.查找
- 3.插入
- 4.删除
- 5.运行
- 6.性能分析
- 三、完整代码
- 总结
一、概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
- 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
- 它的左右子树也分别为二叉搜索树
二、操作
1.建树
class Node{public int val;public Node left;//建立左结点public Node right;//建立右节点public Node(int val){this.val = val;}
}
2.查找
通过观察上面的三个查找数据的图,我们可以得到以下规律:
若根节点不为空:
- 如果根节点key==查找的key,返回true;
- 如果根节点小于查找key,在其右子树查找;
- 如果根节点大于查找key,在其左子树查找。
如果都没有,返回false。
public Node search(int key){Node cur = root;while (cur != null){if(cur.val == key){return cur;}else if(cur.val < key){cur = cur.right;}else {cur = cur.left;}}return null;//表示没有这个结构}
3.插入
步骤:
- 如果树为空树,即根 == null,直接插入
- 如果树不是空树,按照查找逻辑确定插入位置,插入新结点
public boolean insert(int val){if(root == null){root = new Node(val);return true;}//寻找位置Node cur = root;Node parent = null;while(cur != null){if(cur.val < val){parent = cur;cur = cur.right;}else if(cur.val == val){return false;//不能存在相同的元素}else {parent = cur;cur = cur.left;}}
//插入结点Node node = new Node(val);if(parent.val < val){parent.right = node;}else {parent.left = node;}return true;}
4.删除
删除这里相对来说比较复杂,分三种情况:
//遍历寻找key的位置public void remove(int key){Node cur = root;Node parent = null;while(cur != null){if(cur.val == key){removeNode(cur,parent);//调用函数break;}else if(cur.val<key){parent = cur;cur = cur.right;}else {parent = cur;cur = cur.left;}}}
//真正的删除结点函数public void removeNode(Node cur,Node parent){if(cur.left == null){//第一种情况,左子树为空if(cur == root){root = cur.right;}else if(cur == parent.left){parent.left = cur.right;}else {parent.right = cur.right;}}else if(cur.right == null){//第二种情况,右子树为空if(cur == root){root = cur.left;}else if(cur == parent.left){parent.left = cur.left;}else {parent.right = cur.left;}}else{//第三种情况,左右子树均不为空//这种情况比较复杂,我们使用替换法,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题Node targetParent = cur;//定义父结点Node target = cur.right;while(target.left != null){targetParent = target;target = target.left;}cur.val = target.val;targetParent.left = target.right;if(target == targetParent.left){//target在左边的情况targetParent.left = target.right;}else{//target在右边的情况targetParent.right = target.right;}}}
上面有段代码可能会比较费解,这里给一个示意图,大家对照图片看一下。
5.运行
public static void main(String[] args) {int[] array = {31,2,18,19,9,34,7};BinarySearchTree binarySearchTree = new BinarySearchTree();//实例化for(int i = 0 ;i < array.length; i++){binarySearchTree.insert(array[i]);//插入结点}binarySearchTree.inOrder(binarySearchTree.root);//中序遍历System.out.println();System.out.println("插入重复的数据");System.out.println(binarySearchTree.insert(3));//数据不存在,可插入,返回trueSystem.out.println("删除数据:");binarySearchTree.remove(7);;binarySearchTree.inOrder(binarySearchTree.root);//中序遍历}
运行结果:
6.性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
- 最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:log2N.(以2为底的logN).
- 最差情况下,二叉搜索树退化为单支树,其平均比较次数为N/2.
三、完整代码
class Node{public int val;public Node left;public Node right;public Node(int val){this.val = val;}
}public class BinarySearchTree {public Node root = null;public Node search(int key){Node cur = root;while (cur != null){if(cur.val == key){return cur;}else if(cur.val < key){cur = cur.right;}else {cur = cur.left;}}return null;//表示没有这个结构}public boolean insert(int val){if(root == null){root = new Node(val);return true;}Node cur = root;Node parent = null;while(cur != null){if(cur.val < val){parent = cur;cur = cur.right;}else if(cur.val == val){return false;//不能存在相同的元素}else {parent = cur;cur = cur.left;}}Node node = new Node(val);if(parent.val < val){parent.right = node;}else {parent.left = node;}return true;}//遍历寻找key的位置public void remove(int key){Node cur = root;Node parent = null;while(cur != null){if(cur.val == key){removeNode(cur,parent);//调用函数break;}else if(cur.val<key){parent = cur;cur = cur.right;}else {parent = cur;cur = cur.left;}}}
//真正的删除结点函数public void removeNode(Node cur,Node parent){if(cur.left == null){//第一种情况,左子树为空if(cur == root){root = cur.right;}else if(cur == parent.left){parent.left = cur.right;}else {parent.right = cur.right;}}else if(cur.right == null){//第二种情况,右子树为空if(cur == root){root = cur.left;}else if(cur == parent.left){parent.left = cur.left;}else {parent.right = cur.left;}}else{//第三种情况,左右子树均不为空Node targetParent = cur;Node target = cur.right;while(target.left != null){targetParent = target;target = target.left;}cur.val = target.val;targetParent.left = target.right;if(target == targetParent.left){//target在左边的情况targetParent.left = target.right;}else{//target在右边的情况targetParent.right = target.right;}}}
//中序遍历public void inOrder(Node root){if(root == null) return;inOrder(root.left);System.out.print(root.val+ " ");inOrder(root.right);}public static void main(String[] args) {int[] array = {31,2,18,19,9,34,7};BinarySearchTree binarySearchTree = new BinarySearchTree();//实例化for(int i = 0 ;i < array.length; i++){binarySearchTree.insert(array[i]);//插入结点}binarySearchTree.inOrder(binarySearchTree.root);//中序遍历System.out.println();System.out.println("插入重复的数据");System.out.println(binarySearchTree.insert(3));//数据不存在,可插入,返回trueSystem.out.println("删除数据:");binarySearchTree.remove(7);;binarySearchTree.inOrder(binarySearchTree.root);//中序遍历}
}
总结
写这次博客的最大难度可能就是平衡二叉树的删除操作的第三种情况了,一开始没太懂整体逻辑,后面的话,慢慢跟着代码画图,模仿运行时的操作,慢慢就懂了。果然,数据结构还是得多画图,多练。
本文标签: Java数据结构平衡二叉树的手术刀剖析
版权声明:本文标题:【Java数据结构】平衡二叉树的手术刀剖析 内容由热心网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://it.en369.cn/IT/1694633995a254313.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论