admin管理员组文章数量:1026989
银行家算法属于避免死锁的一个著名算法,由Dijkstra在1965年为T.H.E系统设计的一种避免死锁产生的算法。这是由于该算法用于银行系统现金贷款的发放而得名。
一 系统安全状态
指系统能按照某种顺序如<P1,P2,…,Pn>(称为<P1,P2,…,Pn>序列为安全序列),为每个进程分配所需的资源,直至最大需求,使得每个进程都能顺利完成。
二 银行家算法描述
假设在进程并发执行时,进程i提出请求j类资源k个后,表示为Requesti[j]=k。系统按下述步骤进行安全检查:
1)如果Requesti≤Needi则继续以下检查,否则显示需求申请超出最大需求值的错误。
2)如果Requesti≤Available则继续以下检查,否则显示系统无足够资源,Pi阻塞等待。
3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值:
Available[j]∶=Available[j]-Requesti[j];
Allocation[i,j]∶=Allocation[i,j]+Requesti[j];
Need[i,j]∶=Need[i,j]-Requesti[j];
4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则, 将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
特点:
允许互斥、部分分配和不可抢占,可提高资源利用率;
要求事先说明最大资源要求,在现实中很困难。
三 安全性算法过程描述
(01)设置两个向量:
① 工作向量Work: 它表示系统可提供给进程继续运行所需的各类资源数目,它含有m个元素,在执行安全算法开始时,Work∶=Available;
② Finish: 它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]∶=false; 当有足够资源分配给进程时, 再令Finish[i]∶=true。
2)从进程集合中找到一个能满足下述条件的进程:
① Finish[i]=false;
② Need[i,j]≤Work[j]; 若找到, 执行步骤3), 否则,执行步骤4)。
3)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:
Work[j]∶=Work[i]+Allocation[i,j];
Finish[i]∶=true;
go to step 2;
4)如果所有进程的Finish[i]=true都满足, 则表示系统处于安全状态;否则,系统处于不安全状态。
四 两种算法流程图
1.银行家算法:
2.安全性算法:
五 完整代码
#include <stdio.h>
int main()
{
int claim[5][3]={
{
7,5,3},{
3,2,2},{
9,0,2},{
2,2,2},{
4,3,3}};//各线程最大需求量
int allocation[
银行家算法属于避免死锁的一个著名算法,由Dijkstra在1965年为T.H.E系统设计的一种避免死锁产生的算法。这是由于该算法用于银行系统现金贷款的发放而得名。
一 系统安全状态
指系统能按照某种顺序如<P1,P2,…,Pn>(称为<P1,P2,…,Pn>序列为安全序列),为每个进程分配所需的资源,直至最大需求,使得每个进程都能顺利完成。
二 银行家算法描述
假设在进程并发执行时,进程i提出请求j类资源k个后,表示为Requesti[j]=k。系统按下述步骤进行安全检查:
1)如果Requesti≤Needi则继续以下检查,否则显示需求申请超出最大需求值的错误。
2)如果Requesti≤Available则继续以下检查,否则显示系统无足够资源,Pi阻塞等待。
3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值:
Available[j]∶=Available[j]-Requesti[j];
Allocation[i,j]∶=Allocation[i,j]+Requesti[j];
Need[i,j]∶=Need[i,j]-Requesti[j];
4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则, 将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
特点:
允许互斥、部分分配和不可抢占,可提高资源利用率;
要求事先说明最大资源要求,在现实中很困难。
三 安全性算法过程描述
(01)设置两个向量:
① 工作向量Work: 它表示系统可提供给进程继续运行所需的各类资源数目,它含有m个元素,在执行安全算法开始时,Work∶=Available;
② Finish: 它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]∶=false; 当有足够资源分配给进程时, 再令Finish[i]∶=true。
2)从进程集合中找到一个能满足下述条件的进程:
① Finish[i]=false;
② Need[i,j]≤Work[j]; 若找到, 执行步骤3), 否则,执行步骤4)。
3)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:
Work[j]∶=Work[i]+Allocation[i,j];
Finish[i]∶=true;
go to step 2;
4)如果所有进程的Finish[i]=true都满足, 则表示系统处于安全状态;否则,系统处于不安全状态。
四 两种算法流程图
1.银行家算法:
2.安全性算法:
五 完整代码
#include <stdio.h>
int main()
{
int claim[5][3]={
{
7,5,3},{
3,2,2},{
9,0,2},{
2,2,2},{
4,3,3}};//各线程最大需求量
int allocation[
版权声明:本文标题:操作系统中的银行家算法与安全性算法 内容由热心网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://it.en369.cn/jiaocheng/1727376103a737317.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论